Step of Proof: nth_tl_append
11,40
postcript
pdf
Inference at
*
2
1
1
I
of proof for Lemma
nth
tl
append
:
1.
T
: Type
2.
T
List
3.
T
4.
v
:
T
List
5.
bs
:
T
List
6. nth_tl(||
v
||;
v
@
bs
) ~
bs
7. 0 < (||
v
||+1)
nth_tl((||
v
||+1) - 1;
v
@
bs
) ~
bs
latex
by ((NthHypSq (-2))
CollapseTHEN (ProveSqEq))
latex
C
1
:
C1:
((||
v
||+1) - 1) ~ ||
v
||
C
.
Definitions
a
<
b
,
n
+
m
,
#$n
,
nth_tl(
n
;
as
)
,
||
as
||
,
as
@
bs
,
type
List
,
s
~
t
,
Type
,
n
-
m
origin